Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
1.
bioRxiv ; 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38559075

RESUMO

Hypertranscription is widespread in aggressive human cancers. However detection relies on mRNAs, which are heavily processed and have variable half-lives, and on accurate cell number estimations. Previously we introduced FFPE-CUTAC, a genome-wide method for mapping RNA Polymerase II in formalin-fixed paraffin-embedded (FFPE) sections. Here we apply FFPE-CUTAC on slides and curls to demonstrate hypertranscription at regulatory elements and replication-coupled histone genes. We find that hypertranscription differs between transgene-driven mouse gliomas and scales with enhanced proliferation and reduced mitochondrial DNA. We also apply FFPE-CUTAC to identify tumor-specific patterns in assorted human tumor-normal pairs. We analyze the top-ranked 100 annotated regulatory elements that are hypertranscribed in most of the tumors and identify multiple loci around ERBB2 on Chromosome 17q12-21 in the breast and colon cancer samples, mapping likely HER2 amplifications punctuated by selective sweeps. Our results demonstrate that FFPE-CUTAC measurement of hypertranscription provides an affordable and sensitive genome-wide strategy for cancer diagnosis.

3.
Cell Rep ; 43(3): 113851, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38427559

RESUMO

Human centromeres are located within α-satellite arrays and evolve rapidly, which can lead to individual variation in array length. Proposed mechanisms for such alterations in length are unequal crossover between sister chromatids, gene conversion, and break-induced replication. However, the underlying molecular mechanisms responsible for the massive, complex, and homogeneous organization of centromeric arrays have not been experimentally validated. Here, we use droplet digital PCR assays to demonstrate that centromeric arrays can expand and contract within ∼20 somatic cell divisions of an alternative lengthening of telomere (ALT)-positive cell line. We find that the frequency of array variation among single-cell-derived subclones ranges from a minimum of ∼7% to a maximum of ∼100%. Further clonal evolution revealed that centromere expansion is favored over contraction. We find that the homologous recombination protein RAD52 and the helicase PIF1 are required for extensive array change, suggesting that centromere sequence evolution can occur via break-induced replication.


Assuntos
Centrômero , DNA Satélite , Humanos , Linhagem Celular , DNA Helicases/genética
4.
Immunity ; 57(2): 287-302.e12, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38354704

RESUMO

The interaction of the tumor necrosis factor receptor (TNFR) family member CD27 on naive CD8+ T (Tn) cells with homotrimeric CD70 on antigen-presenting cells (APCs) is necessary for T cell memory fate determination. Here, we examined CD27 signaling during Tn cell activation and differentiation. In conjunction with T cell receptor (TCR) stimulation, ligation of CD27 by a synthetic trimeric CD70 ligand triggered CD27 internalization and degradation, suggesting active regulation of this signaling axis. Internalized CD27 recruited the signaling adaptor TRAF2 and the phosphatase SHP-1, thereby modulating TCR and CD28 signals. CD27-mediated modulation of TCR signals promoted transcription factor circuits that induced memory rather than effector associated gene programs, which are induced by CD28 costimulation. CD27-costimulated chimeric antigen receptor (CAR)-engineered T cells exhibited improved tumor control compared with CD28-costimulated CAR-T cells. Thus, CD27 signaling during Tn cell activation promotes memory properties with relevance to T cell immunotherapy.


Assuntos
Antígenos CD28 , Redes Reguladoras de Genes , Fator 2 Associado a Receptor de TNF/genética , Fator 2 Associado a Receptor de TNF/metabolismo , Antígenos CD28/metabolismo , Transdução de Sinais , Ativação Linfocitária , Receptores de Antígenos de Linfócitos T/metabolismo , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/genética , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Ligante CD27/genética , Ligante CD27/metabolismo , Linfócitos T CD8-Positivos
5.
Nat Genet ; 56(1): 100-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38049663

RESUMO

Chromatin accessibility is a hallmark of active transcription and entails ATP-dependent nucleosome remodeling, which is carried out by complexes such as Brahma-associated factor (BAF). However, the mechanistic links between transcription, nucleosome remodeling and chromatin accessibility are unclear. Here, we used a chemical-genetic approach coupled with time-resolved chromatin profiling to dissect the interplay between RNA Polymerase II (RNAPII), BAF and DNA-sequence-specific transcription factors in mouse embryonic stem cells. We show that BAF dynamically unwraps and evicts nucleosomes at accessible chromatin regions, while RNAPII promoter-proximal pausing stabilizes BAF chromatin occupancy and enhances ATP-dependent nucleosome eviction by BAF. We find that although RNAPII and BAF dynamically probe both transcriptionally active and Polycomb-repressed genomic regions, pluripotency transcription factor chromatin binding confers locus specificity for productive chromatin remodeling and nucleosome eviction by BAF. Our study suggests a paradigm for how functional synergy between dynamically acting chromatin factors regulates locus-specific nucleosome organization and chromatin accessibility.


Assuntos
Nucleossomos , Fatores de Transcrição , Animais , Camundongos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Nucleossomos/genética , Cromatina/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Montagem e Desmontagem da Cromatina/genética , Trifosfato de Adenosina
6.
Mol Cell ; 84(2): 194-201, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38016477

RESUMO

In eukaryotic genomes, transcriptional machinery and nucleosomes compete for binding to DNA sequences; thus, a crucial aspect of gene regulatory element function is to modulate chromatin accessibility for transcription factor (TF) and RNA polymerase binding. Recent structural studies have revealed multiple modes of TF engagement with nucleosomes, but how initial "pioneering" results in steady-state DNA accessibility for further TF binding and RNA polymerase II (RNAPII) engagement has been unclear. Even less well understood is how distant sites of open chromatin interact with one another, such as when developmental enhancers activate promoters to release RNAPII for productive elongation. Here, we review evidence for the centrality of the conserved SWI/SNF family of nucleosome remodeling complexes, both in pioneering and in mediating enhancer-promoter contacts. Consideration of the nucleosome unwrapping and ATP hydrolysis activities of SWI/SNF complexes, together with their architectural features, may reconcile steady-state TF occupancy with rapid TF dynamics observed by live imaging.


Assuntos
Nucleossomos , Fatores de Transcrição , Nucleossomos/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cromatina , Proteínas de Ligação a DNA/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Epigênese Genética , Montagem e Desmontagem da Cromatina
7.
Nat Protoc ; 19(1): 83-112, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37935964

RESUMO

Cleavage under targets and tagmentation (CUT&Tag) is an antibody-directed in situ chromatin profiling strategy that is rapidly replacing immune precipitation-based methods, such as chromatin immunoprecipitation-sequencing. The efficiency of the method enables chromatin profiling in single cells but is limited by the numbers of cells that can be profiled. Here, we describe a combinatorial barcoding strategy for CUT&Tag that harnesses a nanowell dispenser for simple, high-resolution, high-throughput, single-cell chromatin profiling. In this single-cell combinatorial indexing CUT&Tag (sciCUT&Tag) protocol, lightly cross-linked nuclei are bound to magnetic beads and incubated with primary and secondary antibodies in bulk and then arrayed in a 96-well plate for a first round of cellular indexing by antibody-directed Tn5 tagmentation. The sample is then repooled, mixed and arrayed across 5,184 nanowells at a density of 12-24 nuclei per well for a second round of cellular indexing during PCR amplification of the sequencing-ready library. This protocol can be completed in 1.5 days by a research technician, and we illustrate the optimized protocol by profiling histone modifications associated with developmental gene repression (H3K27me3) as well as transcriptional activation (H3K4me1-2-3) in human peripheral blood mononuclear cells and use single-nucleotide polymorphisms to facilitate collision removal. We have also used sciCUT&Tag for simultaneous profiling of multiple chromatin epitopes in single cells. The reduced cost, improved resolution and scalability of sciCUT&Tag make it an attractive platform to profile chromatin features in single cells.


Assuntos
Histonas , Leucócitos Mononucleares , Humanos , Histonas/genética , Histonas/metabolismo , Leucócitos Mononucleares/metabolismo , Cromatina/genética , Processamento de Proteína Pós-Traducional , Código das Histonas , Análise de Célula Única/métodos
8.
Elife ; 122023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38032818

RESUMO

Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.


Assuntos
Drosophila , Epigenoma , Masculino , Animais , Drosophila/genética , Cromossomo X/genética , Cromossomo X/metabolismo , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Espermatócitos/metabolismo
9.
bioRxiv ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38014305

RESUMO

Human centromeres are located within α-satellite arrays and evolve rapidly, which can lead to individual variation in array lengths. Proposed mechanisms for such alterations in lengths are unequal cross-over between sister chromatids, gene conversion, and break-induced replication. However, the underlying molecular mechanisms responsible for the massive, complex, and homogeneous organization of centromeric arrays have not been experimentally validated. Here, we use droplet digital PCR assays to demonstrate that centromeric arrays can expand and contract within ~20 somatic cell divisions of a cell line. We find that the frequency of array variation among single-cell-derived subclones ranges from a minimum of ~7% to a maximum of ~100%. Further clonal evolution revealed that centromere expansion is favored over contraction. We find that the homologous recombination protein RAD52 and the helicase PIF1 are required for extensive array change, suggesting that centromere sequence evolution can occur via break-induced replication.

10.
bioRxiv ; 2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873332

RESUMO

Spermatogenesis in the Drosophila male germline proceeds through a unique transcriptional program controlled both by germline-specific transcription factors and by testis-specific versions of core transcriptional machinery. This program includes the activation of genes on the heterochromatic Y chromosome, and reduced transcription from the X chromosome, but how expression from these sex chromosomes is regulated has not been defined. To resolve this, we profiled active chromatin features in the testes from wildtype and meiotic arrest mutants and integrate this with single-cell gene expression data from the Fly Cell Atlas. These data assign the timing of promoter activation for genes with germline-enriched expression throughout spermatogenesis, and general alterations of promoter regulation in germline cells. By profiling both active RNA polymerase II and histone modifications in isolated spermatocytes, we detail widespread patterns associated with regulation of the sex chromosomes. Our results demonstrate that the X chromosome is not enriched for silencing histone modifications, implying that sex chromosome inactivation does not occur in the Drosophila male germline. Instead, a lack of dosage compensation in spermatocytes accounts for the reduced expression from this chromosome. Finally, profiling uncovers dramatic ubiquitinylation of histone H2A and lysine-16 acetylation of histone H4 across the Y chromosome in spermatocytes that may contribute to the activation of this heterochromatic chromosome.

11.
bioRxiv ; 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37693371

RESUMO

Oncogenic fusions involving transcription factors are present in the majority of pediatric leukemias; however, the context-specific mechanisms they employ to drive cancer remain poorly understood. CBFA2T3-GLIS2 (C/G) fusions occur in treatment-refractory acute myeloid leukemias and are restricted to young children. To understand how the C/G fusion drives oncogenesis we applied CUT&RUN chromatin profiling to an umbilical cord blood/endothelial cell (EC) co-culture model of C/G AML that recapitulates the biology of this malignancy. We find C/G fusion binding is mediated by its zinc finger domains. Integration of fusion binding sites in C/G- transduced cells with Polycomb Repressive Complex 2 (PRC2) sites in control cord blood cells identifies MYCN, ZFPM1, ZBTB16 and LMO2 as direct C/G targets. Transcriptomic analysis of a large pediatric AML cohort shows that these genes are upregulated in C/G patient samples. Single cell RNA-sequencing of umbilical cord blood identifies a population of megakaryocyte precursors that already express many of these genes despite lacking the fusion. By integrating CUT&RUN data with CRISPR dependency screens we identify BRG1/SMARCA4 as a vulnerability in C/G AML. BRG1 profiling in C/G patient-derived cell lines shows that the CBFA2T3 locus is a binding site, and treatment with clinically-available BRG1 inhibitors reduces fusion levels and downstream C/G targets including N-MYC, resulting in C/G leukemia cell death and extending survival in a murine xenograft model.

12.
Nat Commun ; 14(1): 5930, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37739938

RESUMO

For more than a century, formalin-fixed paraffin-embedded (FFPE) sample preparation has been the preferred method for long-term preservation of biological material. However, the use of FFPE samples for epigenomic studies has been difficult because of chromatin damage from long exposure to high concentrations of formaldehyde. Previously, we introduced Cleavage Under Targeted Accessible Chromatin (CUTAC), an antibody-targeted chromatin accessibility mapping protocol based on CUT&Tag. Here we show that simple modifications of our CUTAC protocol either in single tubes or directly on slides produce high-resolution maps of paused RNA Polymerase II at enhancers and promoters using FFPE samples. We find that transcriptional regulatory element differences produced by FFPE-CUTAC distinguish between mouse brain tumors and identify and map regulatory element markers with high confidence and precision, including microRNAs not detectable by RNA-seq. Our simple workflows make possible affordable epigenomic profiling of archived biological samples for biomarker identification, clinical applications and retrospective studies.


Assuntos
Cromatina , Epigenômica , Animais , Camundongos , Inclusão em Parafina , Estudos Retrospectivos , Cromatina/genética , Formaldeído
13.
Trends Biochem Sci ; 48(12): 1071-1082, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37777391

RESUMO

Giant viruses (Nucleocytoviricota) have a largely conserved lifecycle, yet how they cram their large genomes into viral capsids is mostly unknown. The major capsid protein and the packaging ATPase (pATPase) comprise a highly conserved morphogenesis module in giant viruses, yet some giant viruses dispense with an icosahedral capsid, and others encode multiple versions of pATPases, including conjoined ATPase doublets, or encode none. Some giant viruses have acquired DNA-condensing proteins to compact their genomes, including sheath-like structures encasing folded DNA or densely packed viral nucleosomes that show a resemblance to eukaryotic nucleosomes at the telomeres. Here, we review what is known and unknown about these ATPases and condensing proteins, and place these variations in the context of viral lifecycles.


Assuntos
Nucleossomos , Empacotamento do Genoma Viral , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , DNA , Adenosina Trifosfatases/genética , Genoma Viral , Montagem de Vírus/genética
14.
Cell Syst ; 14(7): 549-550, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37473727

RESUMO

How ß-catenin, the nuclear activator of the Wnt pathway, affects the chromatin environment of its targets is unknown. Over a time course of stimulation, ß-catenin repositions itself around the genome in a cell-type-specific manner, eliciting transient chromatin changes in differentiated cells and progressive shaping of undifferentiated cells.


Assuntos
Proteínas Wnt , beta Catenina , beta Catenina/genética , Proteínas Wnt/genética , Núcleo Celular/metabolismo , Cromatina/metabolismo , Via de Sinalização Wnt
15.
Sci Adv ; 9(24): eadg3257, 2023 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-37315134

RESUMO

Anthracyclines are a class of widely prescribed anticancer drugs that disrupt chromatin by intercalating into DNA and enhancing nucleosome turnover. To understand the molecular consequences of anthracycline-mediated chromatin disruption, we used Cleavage Under Targets and Tagmentation (CUT&Tag) to profile RNA polymerase II during anthracycline treatment in Drosophila cells. We observed that treatment with the anthracycline aclarubicin leads to elevated levels of RNA polymerase II and changes in chromatin accessibility. We found that promoter proximity and orientation affect chromatin changes during aclarubicin treatment, as closely spaced divergent promoter pairs show greater chromatin changes when compared to codirectionally oriented tandem promoters. We also found that aclarubicin treatment changes the distribution of noncanonical DNA G-quadruplex structures both at promoters and at G-rich pericentromeric repeats. Our work suggests that the cancer-killing activity of aclarubicin is driven by the disruption of nucleosomes and RNA polymerase II.


Assuntos
Aclarubicina , Policetídeos , Animais , Aclarubicina/farmacologia , RNA Polimerase II/genética , Antraciclinas , Cromatina/genética , Nucleossomos , Drosophila
16.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205597

RESUMO

Background: The number and escape levels of genes that escape X chromosome inactivation (XCI) in female somatic cells vary among tissues and cell types, potentially contributing to specific sex differences. Here we investigate the role of CTCF, a master chromatin conformation regulator, in regulating escape from XCI. CTCF binding profiles and epigenetic features were systematically examined at constitutive and facultative escape genes using mouse allelic systems to distinguish the inactive X (Xi) and active X (Xa) chromosomes. Results: We found that escape genes are located inside domains flanked by convergent arrays of CTCF binding sites, consistent with the formation of loops. In addition, strong and divergent CTCF binding sites often located at the boundaries between escape genes and adjacent neighbors subject to XCI would help insulate domains. Facultative escapees show clear differences in CTCF binding dependent on their XCI status in specific cell types/tissues. Concordantly, deletion but not inversion of a CTCF binding site at the boundary between the facultative escape gene Car5b and its silent neighbor Siah1b resulted in loss of Car5b escape. Reduced CTCF binding and enrichment of a repressive mark over Car5b in cells with a boundary deletion indicated loss of looping and insulation. In mutant lines in which either the Xi-specific compact structure or its H3K27me3 enrichment was disrupted, escape genes showed an increase in gene expression and associated active marks, supporting the roles of the 3D Xi structure and heterochromatic marks in constraining levels of escape. Conclusion: Our findings indicate that escape from XCI is modulated both by looping and insulation of chromatin via convergent arrays of CTCF binding sites and by compaction and epigenetic features of the surrounding heterochromatin.

17.
Cancer Cell ; 41(5): 853-870.e13, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37084735

RESUMO

We uncover a tumor-suppressive process in urothelium called transcriptional-translational conflict caused by deregulation of the central chromatin remodeling component ARID1A. Loss of Arid1a triggers an increase in a nexus of pro-proliferation transcripts, but a simultaneous inhibition of the eukaryotic elongation factor 2 (eEF2), which results in tumor suppression. Resolution of this conflict through enhancing translation elongation speed enables the efficient and precise synthesis of a network of poised mRNAs resulting in uncontrolled proliferation, clonogenic growth, and bladder cancer progression. We observe a similar phenomenon in patients with ARID1A-low tumors, which also exhibit increased translation elongation activity through eEF2. These findings have important clinical implications because ARID1A-deficient, but not ARID1A-proficient, tumors are sensitive to pharmacologic inhibition of protein synthesis. These discoveries reveal an oncogenic stress created by transcriptional-translational conflict and provide a unified gene expression model that unveils the importance of the crosstalk between transcription and translation in promoting cancer.


Assuntos
Cromatina , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética
18.
Genome Res ; 33(1): 1-17, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36650052

RESUMO

Vertebrate genomes are partitioned into chromatin domains or topologically associating domains (TADs), which are typically bound by head-to-head pairs of CTCF binding sites. Transcription at domain boundaries correlates with better insulation; however, it is not known whether the boundary transcripts themselves contribute to boundary function. Here we characterize boundary-associated RNAs genome-wide, focusing on the disease-relevant INK4a/ARF and MYC TAD. Using CTCF site deletions and boundary-associated RNA knockdowns, we observe that boundary-associated RNAs facilitate recruitment and clustering of CTCF at TAD borders. The resulting CTCF enrichment enhances TAD insulation, enhancer-promoter interactions, and TAD gene expression. Importantly, knockdown of boundary-associated RNAs results in loss of boundary insulation function. Using enhancer deletions and CRISPRi of promoters, we show that active TAD enhancers, but not promoters, induce boundary-associated RNA transcription, thus defining a novel class of regulatory enhancer RNAs.


Assuntos
Cromatina , RNA , Cromatina/genética , Fator de Ligação a CCCTC/metabolismo , Sítios de Ligação , Regiões Promotoras Genéticas , Elementos Facilitadores Genéticos
19.
bioRxiv ; 2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36711459

RESUMO

Chromatin accessibility is a hallmark of active transcription and requires ATP-dependent nucleosome remodeling by Brahma-Associated Factor (BAF). However, the mechanistic link between transcription, nucleosome remodeling, and chromatin accessibility is unclear. Here, we used a chemical-genetic approach to dissect the interplay between RNA Polymerase II (RNAPII), BAF, and DNA-sequence-specific transcription factors (TFs) in mouse embryonic stem cells. By time-resolved chromatin profiling with acute transcription block at distinct stages, we show that RNAPII promoter-proximal pausing stabilizes BAF chromatin occupancy and enhances nucleosome eviction by BAF. We find that RNAPII and BAF probe both transcriptionally active and Polycomb-repressed genomic regions and provide evidence that TFs capture transient site exposure due to nucleosome unwrapping by BAF to confer locus specificity for persistent chromatin remodeling. Our study reveals the mechanistic basis of cell-type-specific chromatin accessibility. We propose a new paradigm for how functional synergy between dynamically acting chromatin factors regulates nucleosome organization.

20.
bioRxiv ; 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36712130

RESUMO

Anthracyclines are a class of widely prescribed anti-cancer drugs that disrupt chromatin by intercalating into DNA and enhancing nucleosome turnover. To understand the molecular consequences of anthracycline-mediated chromatin disruption, we utilized CUT&Tag to profile RNA polymerase II during anthracycline treatment in Drosophila cells. We observed that treatment with the anthracycline aclarubicin leads to elevated levels of elongating RNA polymerase II and changes in chromatin accessibility. We found that promoter proximity and orientation impacts chromatin changes during aclarubicin treatment, as closely spaced divergent promoter pairs show greater chromatin changes when compared to codirectionally-oriented tandem promoters. We also found that aclarubicin treatment changes the distribution of non-canonical DNA G-quadruplex structures both at promoters and at G-rich pericentromeric repeats. Our work suggests that the anti-cancer activity of aclarubicin is driven by the effects of nucleosome disruption on RNA polymerase II, chromatin accessibility and DNA structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...